

Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE301	DESIGN OF CONCRETE STRUCTURES I	3-1-0-4	2016

Pre-requisites: CE202 Structural Analysis I

Course objectives:

- To provide the students with the knowledge of the behavior of reinforced concrete structural elements in flexure, shear, compression and torsion
- To enable them to design essential elements such as beams, columns, slabs staircases and footings under various loads.

Syllabus:

Introduction- Limit State method of design- Analysis of singly reinforced rectangular beams- shear strength of RC beam-design of shear reinforcement-bond and development length- curtailment of reinforcement-design of singly reinforced beams-analysis and design of doubly reinforced beams – simply supported , cantilever- analysis of singly reinforced T-beams -design for torsion-design of one-way slab- cantilever slab- continuous slab (detailing only)- two way slabs- design using code coefficients- Limit State of Serviceability-deflection-cracking -Stair cases- design & detailing-Columns-effective length-design of axially loaded short columns with rectangular ties and helical reinforcement.

Expected Outcomes:

The students will be able to

- i. Apply the fundamental concepts of limit state method
- ii. Use IS code of practice for the design of concrete elements
- iii. Understand the structural behavior of reinforced concrete elements in bending, shear, compression and torsion.
- iv. Design beams, slab, stairs, columns and draw the reinforcement details.
- v. Analyze and design for deflection and crack control of reinforced concrete members.

Text Books / References:

- 1. Pillai S.U & Menon D Reinforced Concrete Design, Tata McGraw Hill Publishing Co., 2005
- 2. Punmia, B. C, Jain A.K and, Jain A.K ,RCC Designs, Laxmi Publications Ltd., 10e, 2015
- 3. Varghese P.C, Limit State Design of Reinforced Concrete, Prentice Hall of India Pvt Ltd,, 2008
- 4. Relevant IS codes (I.S 456, I.S 875, SP 34)

COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %	
Ι	Introduction- Plain and Reinforced concrete- Properties of concrete and reinforcing steel-Objectives of design-Different design philosophies- Working Stress and Limit State methods-Limit State	9	15	

	method of design-Introduction to BIS code- Types of limit states-		
	characteristic and design values-partial safety factors-types of loads		
	and their factors.		
	Limit State of Collapse in Bending-assumptions-stress-strain		
	relationship of steel and concrete- analysis of singly reinforced		
	rectangular beams-balanced-under reinforced-over reinforced		
	sections-moment of resistance codal provisions		
	Limit state of collapse in shear and bond- shear stresses in beams-		
	types of reinforcement-shear strength of RC beam-IS code		
	recommendations for shear design-design of shear reinforcement-		15
11	examples	9	15
	Bond and development length - anchorage for reinforcement bars -		
	code recommendations regarding curtailment of reinforcement		
	FIRST INTERNAL EXAMINATION		
	Design of Singly Reinforced Beams- basic rules for design- design		
	example of simply supported beam- design of cantilever beam-		
III	detailing Analysis and design of doubly reinforced beams –	9	15
	detailing, T-beams- terminology- analysis of T beams- examples -		
	Design for torsion-IS code approach- examples.		
	Design of slabs- introduction- one-way and two-way action of slabs		
TX /	- load distribution in a slab- IS recommendations for design of	0	15
IV	slabs- design of one-way slab- cantilever slab- numerical problems	9	15
	- concepts of detailing of continuous slab -code coefficients.		
	SECOND INTERNAL EXAMINATION		
	Two- way slabs- simply supported and restrained slabs - design		
	using IS Code coefficients Reinforcement detailing		
V	Limit State of Serviceability- limit state of deflection- short term	10	20
	and long term deflection-IS code recommendations- limit state of		
	cracking- estimation of crack width- simple numerical examples		
	Stair cases- Types-proportioning-loads- distribution of loads - codal		
	provisions - design and detailing of dog legged stair- Concepts of		
	tread-riser type stairs (detailing only)		
X 7 X	Columns- introduction -classification- effective length- short	10	20
V I	column - long column - reinforcement-IS specifications regarding	10	20
	columns- limit state of collapse: compression -design of axially		
	loaded short columns-design examples with rectangular ties and		
	helical reinforcement		
	END SEMESTER EXAMINATION		

Note

1. All designs shall be done as per current IS specifications

Special importance shall be given to detailing in designs
 During tutorial hours detailing practice shall be done.

4. SI units shall be followed.

5. IS 456-2000 shall be permitted for the End Semester Examination

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI: 2 questions out of 3 questions carrying 20 marks each
- Note: 1. Each part should have at least one question from each module
 - 2. Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course Code	se Code Course Name L-T-P-Credits Year of Introduction			
CE303	CE303 STRUCTURAL ANALYSIS -11 3-0-0-3 2016			
Pre-requisite:	CE201 Mechanics of Solids			
Course object	ives:	thoda of structural a	nalvaia with a	mahaaia
• To equip on analy	sis of rigid frames and trusses	thous of structural a	nalysis with e	mphasis
Syllabus :	Mothod Moment Distribution Mothod Clana	mong Theorem (Th	raa Mamant I	Equation
Kani's method o	f analysis, Beams curved in Plan, Plastic Theory	yrons meorem (m	lee Moment	Equation),
Expected Out	comes:	ITY		
The students w	ill be able to	1.1.1		
i. analyse	e structures using force method			
11. analyse	structures using displacement method			
iv analyse	structures using plastic theory			
Text Books :				
1. Ker	neth Leet, Chia M Uang & Anne M Gilbert.,	Fundamentals of S	Structu <mark>r</mark> al An	alysis,
	Graw Hill, 4e, 2010	wie Mehrmer I & I	I. I. annu: Duk	lighting
2. K. (P)	Ltd., 2017	ysis volume I & I	I, Laxini Put	oncations
3. Red	dy . C.S., Basic Structural Analysis, Tata Mc	<mark>G</mark> raw Hill, 3 <mark>e</mark> , 201	.1	
References:				
1. Dar	iel L Schodak, Structures, Pearson Education	a, 7e, 2014		
2. Hib	beler, RC, Structural analysis, Pearson Educa	tion, 2012		
3. Kin	ney J. S., Indeterminate Structural Analysis, O	Oxford & IBH, 19	66	
4. Neg	i L. S <mark>. and Jangid R. S, S</mark> tructural Analysis, T	Fata McGraw Hill,	1997	
5. Raja 200	asekaran <mark>S. and Sankara</mark> subramanian G., Com 8	nputational Structu	ral Mechanio	cs, PHI,
6. S.S.	. Bhavikatti <mark>, Structural A</mark> nalysi <mark>s II, Vikas</mark> Pub	olica <mark>tion House</mark> s (F	P) Ltd, 2016	
7. SP: Star	6 (6): Application of Plastic Theory in Design ndards, 1972	n of Steel Structure	es, Bureau of	Indian
8. Tim	oshenko S. P. and Young D. H., Theory of St	tructures, McGraw	Hill, 2e, 190	55
9. Utk	u S, Norris C. H & Wilbur J. B, Elementary	Structural Analysi	s, McGraw H	Iill, 1990
10. Wang C. K., Intermediate Structural Analysis, Tata McGraw Hill, 1989				
	COURSE PLAN			
Module	Contents		Hours	Sem. Exam Marks %
I Cla	peyrons Theorem (Three Moment Equation)	:Derivation of three	e 7	15

	moment equation - application of three moment equation for analysis of		
	continuous beams under the effect of applied loads and uneven support		
	settlement.		
	Slope Deflection Method : Analysis of continuous beams- beams with		
II	overhang- analysis of rigid frames - frames without sway and with sway -	7	15
	different types of loads -settlement effects		
	FIRST INTERNAL EXAMINATION		
ш	Moment Distribution Method: Moment Distribution method – analysis	7	15
111	of beams and frames – non sway and sway analysis .	A'	15
	Kani's Method: Kani's Method of analysis applied to continuous beams		
IV	and single bay single storey rigid frames rigid frames - frames without		15
	sway and with sway.		
	SECOND INTERNAL EXAMINATION		
N/	Beams curved in plan: Analysis of cantilever beam curved in plan,	7	20
v	analysis of circular beams over simple supports.	/	20
	Plastic Theory: Introduction – plastic hinge concepts – plastic modulus –		
VI	shape factor – redistribution of moments – collapse mechanisms –		20
	Plastic analysis of beams and portal frames by equilibrium and	8	20
	mechanism methods.(Single Storey and Single bay Frames only)		
END SEMESTER EXAMINATION			

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each Note :

14

1. Each part should have at least one question from each module.

2. Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE305	GEOTECHNICAL ENGINEERING - II	3-0-0-3	2016

Pre-requisite CE208 Geotechnical Engineering - I

Course objectives:

- To impart to the students, in-depth knowledge about the basic concepts and theories of foundation engineering;
- To enable the students to acquire proper knowledge about various methods of foundation analysis for different practical situations.

Syllabus:

Stresses in subsoil due to loaded areas of various shapes, Boussinesq's formula, Newmark's chart, Lateral earth pressure, Rankine's and Coulomb' theories, Influence of surcharge, inclined backfill, water table and layering, Terzaghi's bearing capacity theory for isolated footings, Local and general shear failure, Total and differential settlements, soil improvement techniques, combined footings, raft foundations, well foundation, Problems encountered in well sinking, Pile foundations, Bearing capacity of single pile static and dynamic formulae, Capacity of Pile groups, Machine foundation, Methods of vibration isolation, site investigation, Guidelines for choosing spacing and depth of borings, boring methods, Standard Penetration Test.

Expected Outcomes:

The students will be able to understand

- i. the basic concepts, theories and methods of analysis in foundation engineering;
- ii. the field problems related to geotechnical engineering and to take appropriate engineering decisions.

Text Books :

- 1. Braja M. Das, "Principles of Foundation Engineering", Cengage Learning India Pvt. Ltd., Delhi, 2011.
- 2. K. R. Arora, Soil Mechanics and Foundation Engineering, Standard Publishers, 2011
- **3.** Murthy V N S., "Advanced Foundation Engineering", CBS Publishers & Distributors Pvt. Ltd., New Delhi, 2007

References:

- 1. Alam Singh., "Soil Engineering in Theory and Practice", Vol.1, CBS Publishers & Distributors Pvt. Ltd., New Delhi. 2002
- 2. Gopal Ranjan and Rao A.S.R., "Basic and Applied Soil Mechanics", New Age International (P) Limited, New Delhi, 2002.
- 3. Purushothamaraj P., Soil Mechanics and Foundation Engineering, Dorling Kindersley(India) Pvt. Ltd., 2013
- 4. TengW.E., "Foundation Design", Prentice Hall, New Jersey, 1962.
- 5. Venkataramiah, "Geotechnical Engineering", Universities Press (India) Limited, Hyderabad, 2000.

COURSE PLAN			
Module	Contents	Hours	Sem. Exam Marks %
I	Stresses in soil due to loaded areas - Boussinesq's formula for point loads – assumptions [no derivation required] – Comments – numerical problems Vertical stress beneath loaded areas of strip, rectangular and circular shapes(no derivation required)- Newmark's chart[construction procedure not required] - Isobars- Pressure bulbs- numerical problems	6	15
п	Lateral earth pressure – At-rest, active and passive earth pressures – Practical examples Rankine's and Coulomb' theories[no derivation required]-Influence of surcharge, inclined backfill and water table on earth pressure- numerical problems Earth pressure on retaining walls with layered backfill- numerical problems	6	15
	FIRST INTERNAL EXAMINATION		
III	Bearing capacity of shallow foundations – Ultimate, safe and allowable bearing capacity Failure mechanism, assumptions and equation of Terzaghi's bearing capacity theory for strip footing[no derivation required] – Terzaghi's formulae for circular and square footings numerical problems Local and general shear failure - Factors affecting bearing capacity – Influence of water table - numerical problems Total and differential settlement- Causes - Methods of reducing differential settlement-Brief discussion on soil improvement through installation of drains and preloading.	7	15
IV	Combined footings- Rectangular and Trapezoidal combined footings - numerical problems Raft foundations (Design Concepts only) - Allowable Bearing capacity of Rafts on sands and clays - Floating foundation. Deep foundations - Elements of a well foundation – Problems encountered in well sinking – Methods to rectify tilts and shifts	6	15
	SECOND INTERNAL EXAMINATION		
V	Pile foundations - Point bearing and friction piles - Bearing capacity of single pile in clay and sand[I.S. Static formulae] - numerical problems Dynamic formulae(Modified Hiley formulae only) - I.S. Pile load test [conventional]- Negative skin friction - numerical problems Group action - Group efficiency - Capacity of Pile groups- numerical problems	8	20

VI	Brief introduction to Machine foundation –Mass spring model for undamped free vibrations - Natural frequency – Coefficient of uniform elastic compression – Methods of vibration isolation Brief introduction to site investigation –Objectives - Guidelines for choosing spacing and depth of borings [I.S. guidelines only] - Auger boring and wash boring methods - Standard Penetration Test – procedure, corrections and correlations.	9	20	
----	---	---	----	--

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN (End semester exam)

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

- 51

Course	Code	Course Name	L-T-P- Credits	Year (Introduc	of
CE3	CE307 GEOMATICS 3-0-0-3			2016	
Prerequis	ite : CE2	207 Surveying			
Course of • To	jectives : impart a	wareness on the advanced surveying techniques		1	
• To	provide	a basic understanding on geospatial data acquisit	ion and its pr	ocess	
Syllabus:		UNIVERSI	1		
Traverse Systems, I	Survey, Remote S	Curve Surveying, Global Navigation Satell ensing, Geographical Information System	ite System,	Global Po	sitioning
Course O	utcomes				
• Th and	e student d the spa	s will possess knowledge on the advanced meth tial representation of data.	ods of surve	ying, the ins	struments
Text Book	s / Refere	nces:	510		
1. Dr (P) 2. Pro Pra 3. R.4 4. S.H	. B.C. Pu) Ltd , 200 of. T.P. K akashan,2 Agor - A K. Dugga	nmia, Ashok Kumar Jain & Arun Kumar Jain 05 Cenetkar and Prof. S.V. Kulkarni - Surveying and 2004 Text book of Surveying and Levelling, Khanna I I - Surveying Vol. II, Tata McGraw Hill Ltd , Rep	- Surveying , l Levelling, F Publishers, 20 print 2015	Laxmi pub Pune Vidyart 005	lications thi Griha
Reference	es :			1	
1. Bu 2. Ch Co 3. Ge	rrough P ang,K, " . Ltd, 20 orge Jose	, Principles of Geographical Information system Introduction to Geographic Information System 08 eph, "Fundamentals of Remote Sensing", University	s, Oxford Un s", Tata McC sity Press, 20	iversity Pres raw-Hill Pu 03	ss, 1998 ıblishing
4. Ilif	fe, C.J., blishing,	Datums and Map Projections for Remote Sensi 2006	ng, GIS and	Surveying,	Whittles
5. Jar edu	nes M A	Andersen, Edward M Mikhail, Surveying The e, 1998	ory and Pra	ctice, McG1	raw Hill
6. Kang-tsung Chang, 'Introduction to GIS', Tata McGraw-Hill Publishing Co. Ltd, 8e, 2016 7. Lillesand M and Kiefer W, "Remote Sensing and Image Interpretation". John Wiley and					
Sons,Inc., 2000					
COURSE PLAN					
Module		Contents		Hours	Sem. Exam Marks %
Ι	Traverse Traverse	e Surveying - Methods of traversing, Checks in c computations, Balancing the traverse- methods	losed traverse	' 6	15

Π	Curve Surveying – Elements of simple and compound curves – Method of setting out– Elements of Reverse curve (Introduction only)– Transition curve – length of curve – Elements of transition curve - Vertical curve (introduction only)	8	15	
	FIRST INTERNAL EXAMINATION			
III	Global Navigation Satellite System- Types, Global Positioning Systems- Components and Principles, Satellite ranging-calculating position, Satellite signal structure, code phase and carrier phase measurements, GPS errors and biases, Application of GPS	6	15	
IV	GPS Surveying methods -Static, Rapid static, Kinematic methods – DGPS, Phases of GPS Survey -Planning and preparation, Field operation-horizontal and vertical control, data sheet, visibility diagram, Processing and report preparation,	6	15	
	SECOND INTERNAL EXAMINATION			
V	Remote Sensing : Definition- Electromagnetic spectrum-Energy interactions with atmosphere and earth surface features-spectral reflectance of vegetation, soil and water- Classification of sensors- Active and Passive, Resolution-spatial, spectral radiometric and Temporal resolution, Multi spectral scanning-Along track and across track scanning	8	20	
VI	Geographical Information System-components of GIS, GIS operations, Map projections- methods, Coordinate systems- Geographic and Projected coordinate systems, Data Types- Spatial and attribute data, Raster and vector data representation-Data Input methods-Geometric Transformation-RMS error, Vector data Analysis-buffering, overlay.	8	20	
	END SEMESTER EXAMINATION			

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE309	WATER RESOURCES ENGINEERING	3-0-0-3	2016

Pre-requisite : NIL

Course objectives

- To impart knowledge regarding the availability of water on hydrosphere, its distribution and quantification
- To convey the knowledge on the scientific methods for computing irrigation water requirements
- To communicate fundamental knowledge on reservoir engineering and river engineering

Syllabus

Hydrologic cycle, Precipitation, Infiltration and Evaporation-measurement and data analysis. Runoff-components and computation, Hydrograph, Unit Hydrograph and S-Hydrograph. Irrigation types and methods-Soil water plant relationships, Frequency of irrigation, Computation of crop water requirement. Stream flow measurement -Stage-discharge curve. Meandering of rivers, river training works. Surface water systems: diversion and storage systems, reservoir - estimation of storage capacity and yield of reservoirs - reservoir sedimentation -useful life of reservoir. Groundwater - Aquifer types and properties - Steady radial flow into a well. Estimation of yield of an open well.

Expected Outcome

After successful completion of this course, the students will be able to :

- i. Describe the hydrologic cycle and estimate the different components
- ii. Determine crop water requirements for design of irrigation systems
- iii. Compute the yield of aquifers and wells.
- iv. Know the features of various river training works
- v. Estimate the storage capacity of reservoirs and their useful life.

Text Books:

- 1. Arora, K.R., "Irrigation, Water Power and Water Resources Engineering", Standard Publishers Distributors, New Delhi, 2009.
- 2. Garg S.K, Irrigation Engineering and Hydraulic Structures Khanna Publishers New Delhi 2006.
- 3. Modi. P. N. Irrigation, Water Resources and Water Power Engineering, S.B.H Publishers and Distributors New Delhi 2009.
- 4. Punmia B.C. Ashok K Jain, Arun K Jain, B. B. L Pande, Irrigation and Water Power Engineering, Laxmi Publications (P) Ltd. 2010.

References:

- 1. Asawa. G.L. Irrigation and Water Resources Engineering, New Age International, 2000
- 2. Ojha.C.S.P., R.Berndtsson, P. Bhunya, Engineering Hydrology, Oxford university Press, 2015.
- 3. Patra. K.C., Hydrology and Water Resources Engineering, CRC Press, 2010.
- 4. Sahasrabudhe S.R., Irrigation Engineering & Hydraulic Structures, S.K. Kataria & Sons, 2013.
- 5. Subramanya. K., Engineering Hydrology, Tata Mc Graw Hill, 2011
- 6. Todd D. K., Ground Water Hydrology, Wiley, 2005.
- 7. Ven Te Chow, David R Maidment, L.W Mays., Applied Hydrology, McGraw Hill, 1988
- 8. Warren Viessman, G.L. Lewis, Introduction to Hydrology, Pearson Education, 2003.

COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %	
I	Hydrologic cycle-precipitation-mechanism, types and forms. Measurement of rainfall using rain gauges-optimum number of rain gauges. Estimation of missing precipitation. Representation of rainfall data-mass curve and hyetograph. Computation of mean precipitation over a catchment. Design rainfall - probable maximum rainfall. Infiltration-measurement by double ring infiltrometer. Horton's model. Evaporation-measurement by IMD land pan, control of evaporation.	8	15	
п	Runoff-components of runoff-methods of estimation of runoff- infiltration indices, Hydrograph analysis-Hydrograph from isolated storm-Base flow separation. Unit hydrograph –uses. Assumptions and limitations of unit hydrograph theory. Computation of storm/flood hydrograph of different duration by method of superposition and by development of S– Hydrograph.	8	15	
	FIRST INTERNAL EXAMINATION			
III	Irrigation– Necessity, Benefits and ill effects. Types: flow and lift irrigation - perennial and inundation irrigation. Methods: flooding, furrow, sprinkler and drip irrigation (concepts only, no design aspects/problems), Soil water plant relationships, soil moisture constants, Computation of crop water requirement: depth and frequency of Irrigation, Duty and delta, relationship, variation of duty, factors. Computation of design discharge of conveyance channels, Irrigation efficiencies. Consumptive use of water: concept of Evapotranspiration. (No detailed discussion on estimation procedures)	6	15	
IV	Stream flow measurement: methods, Estimation of stream flow by area velocity method only, Stage discharge curve. Meandering of rivers, River training – objectives and classification, description of river training works.	6	15	
	SECOND INTERNAL EXAMINATION			
V	Surface Water system: diversion and storage systems, necessity. River flow: Flow duration Curve, Firm yield. Reservoirs-types of reservoirs, zones of storage reservoir, reservoir planning-storage capacity and yield of reservoirs-analytical method and mass curve method. Reservoir sedimentation: trap efficiency, methods for control. Computation of useful life of reservoir.	7	20	
VI	Ground water : vertical distribution of groundwater, classification of saturated formation, water table, Aquifer properties : Porosity, Specific yield, specific retention, Types of aquifers. Darcy's law, co-efficient of permeability, Transmissibility. Wells- Steady radial flow into a fully penetrating well in Confined and Unconfined aquifers. Estimation of yield of an open well, pumping and recuperation tests. Tube wells – types. END SEMESTER EXAMINATION	7	20	

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

Course Code	Course Name	L-T-P-Credits	Year of Introduction		
CE331	MATERIAL TESTING LAB -II	0-0-3-1	2016		
Pre-requisite: CE204 Construction Technology					
Course objectives:					

- To enable experimental evaluation of properties of the materials used for concrete
- To obtain the characteristics of the materials.

List of Experiments:

- 1. Determination of the Specific Gravity and Soundness of cement
- 2. Determination of the Standard Consistency, Initial and Final Setting Times of Cement and the compressive strength of Cement.
- 3. Tests on fine aggregate specific gravity, bulking, sieve analysis, fineness modules, moisture content, bulk density
- 4. Tests on coarse aggregate specific gravity, sieve analysis, fineness modulus, bulk density.
- 5. Tests on Fresh Concrete: Workability : Slump, Vee-Bee, Compaction factor tests ,flow test
- 6. Determination of the Compressive Strength of Concrete by Cube and Cylinder.
- 7. Carrying out the Split Tensile and Flexural strength of Concrete.
- 8. Compressive strength of Brick as per IS
- 9. Transverse strength of tiles
- 10. Demonstration of Mix Design of Concrete by IS methods
- **11.** Non destructive tests (rebound hammer & ultrasonic pulse velocity)

Books/Manuals /References:-

- 1. Concrete Lab Manual, TTTI Chandigarh
- 2. M.L. Gambhir, Concrete Manual, Dhanpat Rai & Sons, Delhi.
- 3. M.S.Shetty, Concrete Technology, Theory and Practice, S.Chand& Company, 2014
- 4. Relevant latest IS codes on Aggregates, Cement & Concrete [269, 383, 2386, 10262(2009), SP23]

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE333	GEOTECHNICAL ENGINEERING LAB	0-0-3-1	2016

Pre-requisite : CE208 Geotechnical Engineering - I

Course objectives:

• To understand the laboratory tests used for determination of physical, index and Engineering properties of soil.

List of Experiments:

- 1. Determination of Water Content, Specific Gravity and Shrinkage Limit
- 2. Field Density determination and Sieve Analysis
- 3. Atterberg Limits (Liquid Limit and Plastic Limit)
- 4. Hydrometer Analysis
- 5. Direct Shear test
- 6. Standard Proctor Compaction Test
- 7. Permeability Test and Unconfined Compression Test
- 8. Consolidation Test
- 9. Swelling Test
- 10. Heavy compaction
- 11. California Bearing Ratio Test.

Expected Outcomes:

The students will

- i. have thorough knowledge about the procedures of laboratory tests used for determination of physical, index and engineering properties of soils
- ii. have the capability to classify soils based on test results and interpret engineering behavior based on test results
- iii. be able to evaluate the permeability and shear strength of soils
- iv. be able to evaluate settlement characteristics of soils
- v. be able to evaluate compaction characteristics required for field application

Text Books / References:

- 1. IS codes relevant to each test
- 2. C. Venkatramaiah, Geotechnical Engineering, New Age International publishers, 2012
- 3. Gopal Ranjan and A. S. R. Rao, Basic and Applied Soil Mechanics, New Age International Publishers, 2012
- 4. K. R. Arora, Soil Mechanics and Foundation Engineering, Standard Publishers, 2011

Course code	Course Name	L-T-P - Credits	Year of Introduction	
**341	DESIGN PROJECT	0-1-2-2	2016	
	Prerequisite : Nil		-010	
Course Object	ives			
• To unde	erstand the engineering aspects of design with re	eference to simple	products	
To foste	er innovation in design of products, processes or	systems		
• To deve	elop design that add value to products and solve	technical problems	S	
Course Plan		AM		
Study : Take specialisation, strength, mater maintenance, h group has to pr	e minimum three simple products, processe study, analyse and present them. The analysis rial, manufacture/construction, quality, reliabil nandling, sustainability, cost etc. whichever a esent individually; choosing different products,	es or techniques shall be focused ity, aesthetics, erg re applicable. Eac processes or techr	in the area of on functionality, gonomics, safety, th student in the hiques.	
Design: The privite detailed de The design is e <i>Note :</i> The one project team (n	roject team shall identify an innovative product, esign. At the end, the team has to document it pr xpected to concentrate on functionality, design f hour/week allotted for tutorial shall be used for ot exceeding four) can be students from differen	process or techno coperly and present for strength is not e discussions and p th branches, if the o	logy and proceed and defend it. expected. resentations. The design problem is	
multidisciplina	ry.			
Expected out	come . ill be able to			
i.	Think innovatively on the development of compon	ents, products, proce	esses or	
	technologies in the engineering field	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
ii.	Analyse the problem requirements and arrive work	able design solution	S	
		-		
Reference: Micha Wiley	el Luchs, Scott Swan, Abbie Griffin, 2015. Desi & Sons, Inc	gn Thinking. 405 j	pages, John	
Evaluation		1		
First evaluation	on (Immediately after first internal examination) 20 mark	S	
Second evaluation (Immediately after second internal examination) 20 marks				
Final evaluation (Last week of the semester) 60 marks				
<i>Note:</i> All the grade.	three evaluations are mandatory for course comp	pletion and for awa	arding the final	

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE361	ADVANCED CONCRETE TECHNOLOGY	3-0-0-3	2016

Prerequisite: CE204 Construction Technology,

Course objectives:

- To understand the behaviour of fresh and hardened concrete.
- To make aware the recent developments in concrete technology
- To understand factors affecting the strength, workability and durability of concrete
- To impart the methods of proportioning of concrete mixtures

Syllabus:

Review of Materials for concrete making. chemical and physical processes of hydration, Properties of fresh concrete - Mineral admixtures - Chemical Admixtures - Proportioning of concrete mixtures. Properties of hardened concrete- Durability of concrete, Non-destructive testing of concrete – special concretes

Expected Outcomes:

The students will be able to:

- i. Understand the testing of concrete materials as per IS code
- ii. Know the procedure to determine the properties of fresh and hardened of concrete
- iii. Design the concrete mix using ACI and IS code methods
- iv. Select and Design special concretes depending on their specific applications
- v. Gain ideas on non-destructive testing of concrete

Text books:

- 1. Neville A.M., "Properties of Concrete", Trans-Atlantic Publications, Inc.; 5e, 2012
- 2. Job Thomas., "Concrete Technology", Cenage learning,
- 3. R. Santhakumar " Concrete Technology", Oxford Universities Press, 2006
- 4. Shetty M. S., Concrete Technology", S. Chand & Co., 2006

References:

- 1. Mehta and Monteiro, "Concrete-Micro structure, Properties and Materials", McGraw Hill Professional
- 2. Neville A. M. and Brooks J. J., Concrete Technology, Pearson Education, 2010
- 3. Lea, Chemistry of Cement and Concrete", Butterworth-Heinemann Ltd, 5e, 2017
- 4. Bungey, Millard, Grantham Testing of Concrete in Structures- Taylor and Francis, 2006

COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %	
Ι	Aggregates: Review of types; sampling and testing; effects on properties of concrete, production of artificial aggregates.Cements: Review of types of cements, chemical composition; properties and tests, chemical and physical process of hydration,	6	15	

	.Blended cements.			
II	Properties of fresh concrete - basics regarding fresh concrete – mixing, workability, placement, consolidation, and curing,	7	15	
	Chemical Admixtures: types and classification; actions and		15	
	interactions; usage; effects on properties of concrete.			
	FIRST INTERNAL EXAMINATION	1		
ш	Mineral Admixtures: Flyash, ground granulated blast furnace slag, metakaolin, rice-husk ash and silica fume; chemical composition; physical characteristics; effects on properties of concrete; advantages and disadvantages. Proportioning of concrete mixtures: Factors considered in the	6	15	
	design of mix . BIS Method, ACI method.	and the second s		
IV	Properties of hardened concrete : Strength- compressive tensile and flexure - Elastic properties - Modulus of elasticity - Creep- factors affecting creep, effect of creep - shrinkage- factors affecting shrinkage, plastic shrinkage, drying shrinkage, autogeneous shrinkage, carbonation shrinkage	6	15	
	SECOND INTERNAL EXAMINATION			
v	Durability of concrete : Durability concept; factors affecting, reinforcement corrosion; fire resistance; frost damage; sulfate attack; alkali silica reaction; concrete in sea water, statistical quality control, acceptance criteria as per BIS code. Non-destructive testing of concrete : Surface Hardness, Ultrasonic, Penetration resistance, Pull-out test, chemical testing for chloride and carbonation- core cutting - measuring reinforcement cover.	9	20	
VI	Special concretes - Lightweight concrete- description of various types -High strength concrete - Self compacting concrete -Roller compacted concrete – Ready mixed concrete – Fibre reinforced concrete - polymer concrete Special processes and technology for particular types of structure - Sprayed concrete; underwater concrete, mass concrete; slip form construction, Prefabrication technology	8	20	
	END SEMESTER EXAMINATION			

14

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note: 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course Code	Course Name	L-T-P- Credits	Ye Intro	ear of duction
CE369	DISASTER MANAGEMENT	3-0-0-3	2	016
Prerequis	ite: NIL			
Course of	jectives:			
• To	provide an overview of the common hazards and their d	ynamics		
• To	inculcate the basic concepts of disaster management	LA A	4	
Syllabus :	ALLADLAL NA	LAN	1	1
Fundame	tal concepts of hazards and disasters: Relationsh	ip between	disast	ers and
developm	ent, implications. Introduction to key concepts an	d terminol	ogy of	hazard,
Turpos of l	Ity, exposure, risk, crisis, emergencies, Disasters, Resiliend	ce. on of Disast	me and i	acture of
Impacts	vaturai Disasters 1- Eartir quakes, Lanusitues. Classificati			lature or
Types of	Natural Disasters II- Floods, Coastal disasters-Tidal	waves. Cvcl	ones. T	sunamis
Classificat	ion of Disasters and nature of Impacts.	, <u>.</u>		
Types of A	Anthropogenic Disasters I – Soil degradation and desertifi	cation.		
Types of	Anthropogenic Disasters II- Fundamental concepts	of water a	nd atm	ospheric
pollution.				
Hazard ar	<mark>id dis</mark> aster management plans for flo <mark>ods</mark> , cyclones, tidal w	vaves.		
Expected	Outcomes:			
The stude	nts will	57.7	1 .1	
i. ga dis	n the general ideas about the processes involved in asters	natural and	d anthro	opogenic
ii. un	derstand the concepts of disaster management and mea	asures taken	to miti	gate and
CO:	ntain common episodes of disasters			
	lana C. "Engine and the daling of the CIC of Derect	. C	- 1 147:1	1 2002
$\begin{array}{ccc} 1. & AI \\ 2 & \Lambda_{T} \end{array}$	iurew, S., Environmental Modeling with GIS and Remote	uth Acio" P	rontico l	ley, 2002 Hall
$2. \Lambda$	dia) 2003	uur Asia , i	rennice-i	1411
3. Be	1. F.G., "Geological Hazards: Their assessment, avoidance	and mitigat	ion". E	& FN
SP	ON Routledge, London, 1999		, 2	
4 Bo	ssler. I.D., "Manual of Geospatial Science and Technology	". Taylor an	d Franci	s. 2001
5. Da	vid Alexander, "Natural Disasters", Research Press, New	Delhi, 1993	a i i unei	0, 2001
6. M	thews, I.A., "Natural hazards and Environmental Change	e", Bill McG	uire. Iar	Mason.
2002				
7. M	tigating Natural Disasters, Phenomena, Effects and option	ns, A Manua	l for pol	icv
makers and planners. United Nations New York, 1991				
8 Nick Carter W "Disaster Management - A Disaster Manager's Handbook" Asian				
Development Bank Philippines 1991				
COURSE PLAN				
				Sem.
Module	Contents]	Hours	Exam Marks
				%

I	Fundamental concepts of hazards and disasters: Relationship between disasters and development, implications. Introduction to key concepts and terminology of hazard, vulnerability, exposure, risk, crisis, emergencies, Disasters, Resilience.	7	15
II	Types of Natural Disasters I- Earth quakes, Landslides. Classification and nature of impacts.		15
	FIRST INTERNAL EXAMINATION		
III	Types of Natural Disasters II- Floods, Coastal disasters- Cyclones, Tsunamis. Classification and nature of impacts.		15
IV	Types of Anthropogenic Disasters I– soil and soil degradation, desertification.		15
SECOND INTERNAL EXAMINATION			
V	Types of Anthropogenic Disasters II-Fundamental concepts of water and atmospheric pollution.	7	20
VI	Hazard and disaster management plans for floods, cyclones, tidal waves.	7	20
END SEMESTER EXAMINATION			

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI: 2 questions out of 3 questions carrying 20 marks each
- Note : 1.Each part should have at least one question from each module

2.Each question can have a maximum of 4 subdivisions (a, b, c, d)